Lower bound on variance of an estimator
Illustration of the Cramer-Rao bound: there is no unbiased estimator which is able to estimate the (2-dimensional) parameter with less variance than the Cramer-Rao bound, illustrated as standard deviation ellipse .
In estimation theory and statistics , the Cramér–Rao bound (CRB ) relates to estimation of a deterministic (fixed, though unknown) parameter. The result is named in honor of Harald Cramér and Calyampudi Radhakrishna Rao ,[ 1] [ 2] [ 3] but has also been derived independently by Maurice Fréchet ,[ 4] Georges Darmois ,[ 5] and by Alexander Aitken and Harold Silverstone .[ 6] [ 7] It is also known as Fréchet-Cramér–Rao or Fréchet-Darmois-Cramér-Rao lower bound. It states that the precision of any unbiased estimator is at most the Fisher information ; or (equivalently) the reciprocal of the Fisher information is a lower bound on its variance .
An unbiased estimator that achieves this bound is said to be (fully) efficient . Such a solution achieves the lowest possible mean squared error among all unbiased methods, and is, therefore, the minimum variance unbiased (MVU) estimator. However, in some cases, no unbiased technique exists which achieves the bound. This may occur either if for any unbiased estimator, there exists another with a strictly smaller variance, or if an MVU estimator exists, but its variance is strictly greater than the inverse of the Fisher information.
The Cramér–Rao bound can also be used to bound the variance of biased estimators of given bias. In some cases, a biased approach can result in both a variance and a mean squared error that are below the unbiased Cramér–Rao lower bound; see estimator bias .
Significant progress over the Cramér–Rao lower bound was proposed by Anil Kumar Bhattacharyya through a series of works, called Bhattacharyya bound .[ 8] [ 9] [ 10] [ 11]
The Cramér–Rao bound is stated in this section for several increasingly general cases, beginning with the case in which the parameter is a scalar and its estimator is unbiased . All versions of the bound require certain regularity conditions, which hold for most well-behaved distributions. These conditions are listed later in this section .
Scalar unbiased case [ edit ]
Suppose
θ
{\displaystyle \theta }
is an unknown deterministic parameter that is to be estimated from
n
{\displaystyle n}
independent observations (measurements) of
x
{\displaystyle x}
, each from a distribution according to some probability density function
f
(
x
;
θ
)
{\displaystyle f(x;\theta )}
. The variance of any unbiased estimator
θ
^
{\displaystyle {\hat {\theta }}}
of
θ
{\displaystyle \theta }
is then bounded[ 12] by the reciprocal of the Fisher information
I
(
θ
)
{\displaystyle I(\theta )}
:
var
(
θ
^
)
≥
1
I
(
θ
)
{\displaystyle \operatorname {var} ({\hat {\theta }})\geq {\frac {1}{I(\theta )}}}
where the Fisher information
I
(
θ
)
{\displaystyle I(\theta )}
is defined by
I
(
θ
)
=
n
E
X
;
θ
[
(
∂
ℓ
(
X
;
θ
)
∂
θ
)
2
]
{\displaystyle I(\theta )=n\operatorname {E} _{X;\theta }\left[\left({\frac {\partial \ell (X;\theta )}{\partial \theta }}\right)^{2}\right]}
and
ℓ
(
x
;
θ
)
=
log
(
f
(
x
;
θ
)
)
{\displaystyle \ell (x;\theta )=\log(f(x;\theta ))}
is the natural logarithm of the likelihood function for a single sample
x
{\displaystyle x}
and
E
x
;
θ
{\displaystyle \operatorname {E} _{x;\theta }}
denotes the expected value with respect to the density
f
(
x
;
θ
)
{\displaystyle f(x;\theta )}
of
X
{\displaystyle X}
. If not indicated, in what follows, the expectation is taken with respect to
X
{\displaystyle X}
.
If
ℓ
(
x
;
θ
)
{\displaystyle \ell (x;\theta )}
is twice differentiable and certain regularity conditions hold, then the Fisher information can also be defined as follows:[ 13]
I
(
θ
)
=
−
n
E
X
;
θ
[
∂
2
ℓ
(
X
;
θ
)
∂
θ
2
]
{\displaystyle I(\theta )=-n\operatorname {E} _{X;\theta }\left[{\frac {\partial ^{2}\ell (X;\theta )}{\partial \theta ^{2}}}\right]}
The efficiency of an unbiased estimator
θ
^
{\displaystyle {\hat {\theta }}}
measures how close this estimator's variance comes to this lower bound; estimator efficiency is defined as
e
(
θ
^
)
=
I
(
θ
)
−
1
var
(
θ
^
)
{\displaystyle e({\hat {\theta }})={\frac {I(\theta )^{-1}}{\operatorname {var} ({\hat {\theta }})}}}
or the minimum possible variance for an unbiased estimator divided by its actual variance.
The Cramér–Rao lower bound thus gives
e
(
θ
^
)
≤
1
{\displaystyle e({\hat {\theta }})\leq 1}
.
General scalar case [ edit ]
A more general form of the bound can be obtained by considering a biased estimator
T
(
X
)
{\displaystyle T(X)}
, whose expectation is not
θ
{\displaystyle \theta }
but a function of this parameter, say,
ψ
(
θ
)
{\displaystyle \psi (\theta )}
. Hence
E
{
T
(
X
)
}
−
θ
=
ψ
(
θ
)
−
θ
{\displaystyle E\{T(X)\}-\theta =\psi (\theta )-\theta }
is not generally equal to 0. In this case, the bound is given by
var
(
T
)
≥
[
ψ
′
(
θ
)
]
2
I
(
θ
)
{\displaystyle \operatorname {var} (T)\geq {\frac {[\psi '(\theta )]^{2}}{I(\theta )}}}
where
ψ
′
(
θ
)
{\displaystyle \psi '(\theta )}
is the derivative of
ψ
(
θ
)
{\displaystyle \psi (\theta )}
(by
θ
{\displaystyle \theta }
), and
I
(
θ
)
{\displaystyle I(\theta )}
is the Fisher information defined above.
Bound on the variance of biased estimators [ edit ]
Apart from being a bound on estimators of functions of the parameter, this approach can be used to derive a bound on the variance of biased estimators with a given bias, as follows.[ 14] Consider an estimator
θ
^
{\displaystyle {\hat {\theta }}}
with bias
b
(
θ
)
=
E
{
θ
^
}
−
θ
{\displaystyle b(\theta )=E\{{\hat {\theta }}\}-\theta }
, and let
ψ
(
θ
)
=
b
(
θ
)
+
θ
{\displaystyle \psi (\theta )=b(\theta )+\theta }
. By the result above, any unbiased estimator whose expectation is
ψ
(
θ
)
{\displaystyle \psi (\theta )}
has variance greater than or equal to
(
ψ
′
(
θ
)
)
2
/
I
(
θ
)
{\displaystyle (\psi '(\theta ))^{2}/I(\theta )}
. Thus, any estimator
θ
^
{\displaystyle {\hat {\theta }}}
whose bias is given by a function
b
(
θ
)
{\displaystyle b(\theta )}
satisfies[ 15]
var
(
θ
^
)
≥
[
1
+
b
′
(
θ
)
]
2
I
(
θ
)
.
{\displaystyle \operatorname {var} \left({\hat {\theta }}\right)\geq {\frac {[1+b'(\theta )]^{2}}{I(\theta )}}.}
The unbiased version of the bound is a special case of this result, with
b
(
θ
)
=
0
{\displaystyle b(\theta )=0}
.
It's trivial to have a small variance − an "estimator" that is constant has a variance of zero. But from the above equation, we find that the mean squared error of a biased estimator is bounded by
E
(
(
θ
^
−
θ
)
2
)
≥
[
1
+
b
′
(
θ
)
]
2
I
(
θ
)
+
b
(
θ
)
2
,
{\displaystyle \operatorname {E} \left(({\hat {\theta }}-\theta )^{2}\right)\geq {\frac {[1+b'(\theta )]^{2}}{I(\theta )}}+b(\theta )^{2},}
using the standard decomposition of the MSE. Note, however, that if
1
+
b
′
(
θ
)
<
1
{\displaystyle 1+b'(\theta )<1}
this bound might be less than the unbiased Cramér–Rao bound
1
/
I
(
θ
)
{\displaystyle 1/I(\theta )}
. For instance, in the example of estimating variance below ,
1
+
b
′
(
θ
)
=
n
n
+
2
<
1
{\displaystyle 1+b'(\theta )={\frac {n}{n+2}}<1}
.
Extending the Cramér–Rao bound to multiple parameters, define a parameter column vector
θ
=
[
θ
1
,
θ
2
,
…
,
θ
d
]
T
∈
R
d
{\displaystyle {\boldsymbol {\theta }}=\left[\theta _{1},\theta _{2},\dots ,\theta _{d}\right]^{T}\in \mathbb {R} ^{d}}
with probability density function
f
(
x
;
θ
)
{\displaystyle f(x;{\boldsymbol {\theta }})}
which satisfies the two regularity conditions below.
The Fisher information matrix is a
d
×
d
{\displaystyle d\times d}
matrix with element
I
m
,
k
{\displaystyle I_{m,k}}
defined as
I
m
,
k
=
E
[
∂
∂
θ
m
log
f
(
x
;
θ
)
∂
∂
θ
k
log
f
(
x
;
θ
)
]
=
−
E
[
∂
2
∂
θ
m
∂
θ
k
log
f
(
x
;
θ
)
]
.
{\displaystyle I_{m,k}=\operatorname {E} \left[{\frac {\partial }{\partial \theta _{m}}}\log f\left(x;{\boldsymbol {\theta }}\right){\frac {\partial }{\partial \theta _{k}}}\log f\left(x;{\boldsymbol {\theta }}\right)\right]=-\operatorname {E} \left[{\frac {\partial ^{2}}{\partial \theta _{m}\,\partial \theta _{k}}}\log f\left(x;{\boldsymbol {\theta }}\right)\right].}
Let
T
(
X
)
{\displaystyle {\boldsymbol {T}}(X)}
be an estimator of any vector function of parameters,
T
(
X
)
=
(
T
1
(
X
)
,
…
,
T
d
(
X
)
)
T
{\displaystyle {\boldsymbol {T}}(X)=(T_{1}(X),\ldots ,T_{d}(X))^{T}}
, and denote its expectation vector
E
[
T
(
X
)
]
{\displaystyle \operatorname {E} [{\boldsymbol {T}}(X)]}
by
ψ
(
θ
)
{\displaystyle {\boldsymbol {\psi }}({\boldsymbol {\theta }})}
. The Cramér–Rao bound then states that the covariance matrix of
T
(
X
)
{\displaystyle {\boldsymbol {T}}(X)}
satisfies
I
(
θ
)
≥
ϕ
(
θ
)
T
cov
θ
(
T
(
X
)
)
−
1
ϕ
(
θ
)
{\displaystyle I\left({\boldsymbol {\theta }}\right)\geq \phi (\theta )^{T}\operatorname {cov} _{\boldsymbol {\theta }}\left({\boldsymbol {T}}(X)\right)^{-1}\phi (\theta )}
,
cov
θ
(
T
(
X
)
)
≥
ϕ
(
θ
)
I
(
θ
)
−
1
ϕ
(
θ
)
T
{\displaystyle \operatorname {cov} _{\boldsymbol {\theta }}\left({\boldsymbol {T}}(X)\right)\geq \phi (\theta )I\left({\boldsymbol {\theta }}\right)^{-1}\phi (\theta )^{T}}
where
The matrix inequality
A
≥
B
{\displaystyle A\geq B}
is understood to mean that the matrix
A
−
B
{\displaystyle A-B}
is positive semidefinite , and
ϕ
(
θ
)
:=
∂
ψ
(
θ
)
/
∂
θ
{\displaystyle \phi (\theta ):=\partial {\boldsymbol {\psi }}({\boldsymbol {\theta }})/\partial {\boldsymbol {\theta }}}
is the Jacobian matrix whose
i
j
{\displaystyle ij}
element is given by
∂
ψ
i
(
θ
)
/
∂
θ
j
{\displaystyle \partial \psi _{i}({\boldsymbol {\theta }})/\partial \theta _{j}}
.
If
T
(
X
)
{\displaystyle {\boldsymbol {T}}(X)}
is an unbiased estimator of
θ
{\displaystyle {\boldsymbol {\theta }}}
(i.e.,
ψ
(
θ
)
=
θ
{\displaystyle {\boldsymbol {\psi }}\left({\boldsymbol {\theta }}\right)={\boldsymbol {\theta }}}
), then the Cramér–Rao bound reduces to
cov
θ
(
T
(
X
)
)
≥
I
(
θ
)
−
1
.
{\displaystyle \operatorname {cov} _{\boldsymbol {\theta }}\left({\boldsymbol {T}}(X)\right)\geq I\left({\boldsymbol {\theta }}\right)^{-1}.}
If it is inconvenient to compute the inverse of the Fisher information matrix ,
then one can simply take the reciprocal of the corresponding diagonal element
to find a (possibly loose) lower bound.[ 16]
var
θ
(
T
m
(
X
)
)
=
[
cov
θ
(
T
(
X
)
)
]
m
m
≥
[
I
(
θ
)
−
1
]
m
m
≥
(
[
I
(
θ
)
]
m
m
)
−
1
.
{\displaystyle \operatorname {var} _{\boldsymbol {\theta }}(T_{m}(X))=\left[\operatorname {cov} _{\boldsymbol {\theta }}\left({\boldsymbol {T}}(X)\right)\right]_{mm}\geq \left[I\left({\boldsymbol {\theta }}\right)^{-1}\right]_{mm}\geq \left(\left[I\left({\boldsymbol {\theta }}\right)\right]_{mm}\right)^{-1}.}
Regularity conditions [ edit ]
The bound relies on two weak regularity conditions on the probability density function ,
f
(
x
;
θ
)
{\displaystyle f(x;\theta )}
, and the estimator
T
(
X
)
{\displaystyle T(X)}
:
Proof based on.[ 17]
Proof
First equation:
Let
δ
{\displaystyle \delta }
be an infinitesimal, then for any
v
∈
R
n
{\displaystyle v\in \mathbb {R} ^{n}}
, plugging
θ
′
=
θ
+
δ
v
{\displaystyle \theta '=\theta +\delta v}
in, we have
(
E
θ
′
[
T
]
−
E
θ
[
T
]
)
=
v
T
ϕ
(
θ
)
δ
;
χ
2
(
μ
θ
′
;
μ
θ
)
=
v
T
I
(
θ
)
v
δ
2
{\displaystyle (E_{\theta '}[T]-E_{\theta }[T])=v^{T}\phi (\theta )\delta ;\quad \chi ^{2}(\mu _{\theta '};\mu _{\theta })=v^{T}I(\theta )v\delta ^{2}}
Plugging this into multivariate Chapman–Robbins bound gives
I
(
θ
)
≥
ϕ
(
θ
)
Cov
θ
[
T
]
−
1
ϕ
(
θ
)
T
{\displaystyle I(\theta )\geq \phi (\theta )\operatorname {Cov} _{\theta }[T]^{-1}\phi (\theta )^{T}}
.
Second equation:
It suffices to prove this for scalar case, with
h
(
X
)
{\displaystyle h(X)}
taking values in
R
{\displaystyle \mathbb {R} }
. Because for general
T
(
X
)
{\displaystyle T(X)}
, we can take any
v
∈
R
m
{\displaystyle v\in \mathbb {R} ^{m}}
, then defining
h
:=
∑
j
v
j
T
j
{\textstyle h:=\sum _{j}v_{j}T_{j}}
, the scalar case gives
Var
θ
[
h
]
=
v
T
Cov
θ
[
T
]
v
≥
v
T
ϕ
(
θ
)
I
(
θ
)
−
1
ϕ
(
θ
)
T
v
{\displaystyle \operatorname {Var} _{\theta }[h]=v^{T}\operatorname {Cov} _{\theta }[T]v\geq v^{T}\phi (\theta )I(\theta )^{-1}\phi (\theta )^{T}v}
This holds for all
v
∈
R
m
{\displaystyle v\in \mathbb {R} ^{m}}
, so we can conclude
Cov
θ
[
T
]
≥
ϕ
(
θ
)
I
(
θ
)
−
1
ϕ
(
θ
)
T
{\displaystyle \operatorname {Cov} _{\theta }[T]\geq \phi (\theta )I(\theta )^{-1}\phi (\theta )^{T}}
The scalar case states that
Var
θ
[
h
]
≥
ϕ
(
θ
)
T
I
(
θ
)
−
1
ϕ
(
θ
)
{\displaystyle \operatorname {Var} _{\theta }[h]\geq \phi (\theta )^{T}I(\theta )^{-1}\phi (\theta )}
with
ϕ
(
θ
)
:=
∇
θ
E
θ
[
h
]
{\displaystyle \phi (\theta ):=\nabla _{\theta }E_{\theta }[h]}
.
Let
δ
{\displaystyle \delta }
be an infinitesimal, then for any
v
∈
R
n
{\displaystyle v\in \mathbb {R} ^{n}}
, taking
θ
′
=
θ
+
δ
v
{\displaystyle \theta '=\theta +\delta v}
in the single-variate Chapman–Robbins bound gives
Var
θ
[
h
]
≥
⟨
v
,
ϕ
(
θ
)
⟩
2
v
T
I
(
θ
)
v
{\displaystyle \operatorname {Var} _{\theta }[h]\geq {\frac {\langle v,\phi (\theta )\rangle ^{2}}{v^{T}I(\theta )v}}}
.
By linear algebra,
sup
v
≠
0
⟨
w
,
v
⟩
2
v
T
M
v
=
w
T
M
−
1
w
{\displaystyle \sup _{v\neq 0}{\frac {\langle w,v\rangle ^{2}}{v^{T}Mv}}=w^{T}M^{-1}w}
for any positive-definite matrix
M
{\displaystyle M}
, thus we obtain
Var
θ
[
h
]
≥
ϕ
(
θ
)
T
I
(
θ
)
−
1
ϕ
(
θ
)
.
{\displaystyle \operatorname {Var} _{\theta }[h]\geq \phi (\theta )^{T}I(\theta )^{-1}\phi (\theta ).}
A standalone proof for the general scalar case [ edit ]
For the general scalar case :
Assume that
T
=
t
(
X
)
{\displaystyle T=t(X)}
is an estimator with expectation
ψ
(
θ
)
{\displaystyle \psi (\theta )}
(based on the observations
X
{\displaystyle X}
), i.e. that
E
(
T
)
=
ψ
(
θ
)
{\displaystyle \operatorname {E} (T)=\psi (\theta )}
. The goal is to prove that, for all
θ
{\displaystyle \theta }
,
var
(
t
(
X
)
)
≥
[
ψ
′
(
θ
)
]
2
I
(
θ
)
.
{\displaystyle \operatorname {var} (t(X))\geq {\frac {[\psi ^{\prime }(\theta )]^{2}}{I(\theta )}}.}
Let
X
{\displaystyle X}
be a random variable with probability density function
f
(
x
;
θ
)
{\displaystyle f(x;\theta )}
.
Here
T
=
t
(
X
)
{\displaystyle T=t(X)}
is a statistic , which is used as an estimator for
ψ
(
θ
)
{\displaystyle \psi (\theta )}
. Define
V
{\displaystyle V}
as the score :
V
=
∂
∂
θ
ln
f
(
X
;
θ
)
=
1
f
(
X
;
θ
)
∂
∂
θ
f
(
X
;
θ
)
{\displaystyle V={\frac {\partial }{\partial \theta }}\ln f(X;\theta )={\frac {1}{f(X;\theta )}}{\frac {\partial }{\partial \theta }}f(X;\theta )}
where the chain rule is used in the final equality above. Then the expectation of
V
{\displaystyle V}
, written
E
(
V
)
{\displaystyle \operatorname {E} (V)}
, is zero. This is because:
E
(
V
)
=
∫
f
(
x
;
θ
)
[
1
f
(
x
;
θ
)
∂
∂
θ
f
(
x
;
θ
)
]
d
x
=
∂
∂
θ
∫
f
(
x
;
θ
)
d
x
=
0
{\displaystyle \operatorname {E} (V)=\int f(x;\theta )\left[{\frac {1}{f(x;\theta )}}{\frac {\partial }{\partial \theta }}f(x;\theta )\right]\,dx={\frac {\partial }{\partial \theta }}\int f(x;\theta )\,dx=0}
where the integral and partial derivative have been interchanged (justified by the second regularity condition).
If we consider the covariance
cov
(
V
,
T
)
{\displaystyle \operatorname {cov} (V,T)}
of
V
{\displaystyle V}
and
T
{\displaystyle T}
, we have
cov
(
V
,
T
)
=
E
(
V
T
)
{\displaystyle \operatorname {cov} (V,T)=\operatorname {E} (VT)}
, because
E
(
V
)
=
0
{\displaystyle \operatorname {E} (V)=0}
. Expanding this expression we have
cov
(
V
,
T
)
=
E
(
T
⋅
[
1
f
(
X
;
θ
)
∂
∂
θ
f
(
X
;
θ
)
]
)
=
∫
t
(
x
)
[
1
f
(
x
;
θ
)
∂
∂
θ
f
(
x
;
θ
)
]
f
(
x
;
θ
)
d
x
=
∂
∂
θ
[
∫
t
(
x
)
f
(
x
;
θ
)
d
x
]
=
∂
∂
θ
E
(
T
)
=
ψ
′
(
θ
)
{\displaystyle {\begin{aligned}\operatorname {cov} (V,T)&=\operatorname {E} \left(T\cdot \left[{\frac {1}{f(X;\theta )}}{\frac {\partial }{\partial \theta }}f(X;\theta )\right]\right)\\[6pt]&=\int t(x)\left[{\frac {1}{f(x;\theta )}}{\frac {\partial }{\partial \theta }}f(x;\theta )\right]f(x;\theta )\,dx\\[6pt]&={\frac {\partial }{\partial \theta }}\left[\int t(x)f(x;\theta )\,dx\right]={\frac {\partial }{\partial \theta }}E(T)=\psi ^{\prime }(\theta )\end{aligned}}}
again because the integration and differentiation operations commute (second condition).
The Cauchy–Schwarz inequality shows that
var
(
T
)
var
(
V
)
≥
|
cov
(
V
,
T
)
|
=
|
ψ
′
(
θ
)
|
{\displaystyle {\sqrt {\operatorname {var} (T)\operatorname {var} (V)}}\geq \left|\operatorname {cov} (V,T)\right|=\left|\psi ^{\prime }(\theta )\right|}
therefore
var
(
T
)
≥
[
ψ
′
(
θ
)
]
2
var
(
V
)
=
[
ψ
′
(
θ
)
]
2
I
(
θ
)
{\displaystyle \operatorname {var} (T)\geq {\frac {[\psi ^{\prime }(\theta )]^{2}}{\operatorname {var} (V)}}={\frac {[\psi ^{\prime }(\theta )]^{2}}{I(\theta )}}}
which proves the proposition.
Multivariate normal distribution [ edit ]
For the case of a d -variate normal distribution
x
∼
N
d
(
μ
(
θ
)
,
C
(
θ
)
)
{\displaystyle {\boldsymbol {x}}\sim {\mathcal {N}}_{d}\left({\boldsymbol {\mu }}({\boldsymbol {\theta }}),{\boldsymbol {C}}({\boldsymbol {\theta }})\right)}
the Fisher information matrix has elements[ 18]
I
m
,
k
=
∂
μ
T
∂
θ
m
C
−
1
∂
μ
∂
θ
k
+
1
2
tr
(
C
−
1
∂
C
∂
θ
m
C
−
1
∂
C
∂
θ
k
)
{\displaystyle I_{m,k}={\frac {\partial {\boldsymbol {\mu }}^{T}}{\partial \theta _{m}}}{\boldsymbol {C}}^{-1}{\frac {\partial {\boldsymbol {\mu }}}{\partial \theta _{k}}}+{\frac {1}{2}}\operatorname {tr} \left({\boldsymbol {C}}^{-1}{\frac {\partial {\boldsymbol {C}}}{\partial \theta _{m}}}{\boldsymbol {C}}^{-1}{\frac {\partial {\boldsymbol {C}}}{\partial \theta _{k}}}\right)}
where "tr" is the trace .
For example, let
w
[
j
]
{\displaystyle w[j]}
be a sample of
n
{\displaystyle n}
independent observations with unknown mean
θ
{\displaystyle \theta }
and known variance
σ
2
{\displaystyle \sigma ^{2}}
.
w
[
j
]
∼
N
d
,
n
(
θ
1
,
σ
2
I
)
.
{\displaystyle w[j]\sim {\mathcal {N}}_{d,n}\left(\theta {\boldsymbol {1}},\sigma ^{2}{\boldsymbol {I}}\right).}
Then the Fisher information is a scalar given by
I
(
θ
)
=
(
∂
μ
(
θ
)
∂
θ
)
T
C
−
1
(
∂
μ
(
θ
)
∂
θ
)
=
∑
i
=
1
n
1
σ
2
=
n
σ
2
,
{\displaystyle I(\theta )=\left({\frac {\partial {\boldsymbol {\mu }}(\theta )}{\partial \theta }}\right)^{T}{\boldsymbol {C}}^{-1}\left({\frac {\partial {\boldsymbol {\mu }}(\theta )}{\partial \theta }}\right)=\sum _{i=1}^{n}{\frac {1}{\sigma ^{2}}}={\frac {n}{\sigma ^{2}}},}
and so the Cramér–Rao bound is
var
(
θ
^
)
≥
σ
2
n
.
{\displaystyle \operatorname {var} \left({\hat {\theta }}\right)\geq {\frac {\sigma ^{2}}{n}}.}
Normal variance with known mean [ edit ]
Suppose X is a normally distributed random variable with known mean
μ
{\displaystyle \mu }
and unknown variance
σ
2
{\displaystyle \sigma ^{2}}
. Consider the following statistic:
T
=
∑
i
=
1
n
(
X
i
−
μ
)
2
n
.
{\displaystyle T={\frac {\sum _{i=1}^{n}(X_{i}-\mu )^{2}}{n}}.}
Then T is unbiased for
σ
2
{\displaystyle \sigma ^{2}}
, as
E
(
T
)
=
σ
2
{\displaystyle E(T)=\sigma ^{2}}
. What is the variance of T ?
var
(
T
)
=
var
(
∑
i
=
1
n
(
X
i
−
μ
)
2
n
)
=
∑
i
=
1
n
var
(
X
i
−
μ
)
2
n
2
=
n
var
(
X
−
μ
)
2
n
2
=
1
n
[
E
{
(
X
−
μ
)
4
}
−
(
E
{
(
X
−
μ
)
2
}
)
2
]
{\displaystyle \operatorname {var} (T)=\operatorname {var} \left({\frac {\sum _{i=1}^{n}(X_{i}-\mu )^{2}}{n}}\right)={\frac {\sum _{i=1}^{n}\operatorname {var} (X_{i}-\mu )^{2}}{n^{2}}}={\frac {n\operatorname {var} (X-\mu )^{2}}{n^{2}}}={\frac {1}{n}}\left[\operatorname {E} \left\{(X-\mu )^{4}\right\}-\left(\operatorname {E} \{(X-\mu )^{2}\}\right)^{2}\right]}
(the second equality follows directly from the definition of variance). The first term is the fourth moment about the mean and has value
3
(
σ
2
)
2
{\displaystyle 3(\sigma ^{2})^{2}}
; the second is the square of the variance, or
(
σ
2
)
2
{\displaystyle (\sigma ^{2})^{2}}
.
Thus
var
(
T
)
=
2
(
σ
2
)
2
n
.
{\displaystyle \operatorname {var} (T)={\frac {2(\sigma ^{2})^{2}}{n}}.}
Now, what is the Fisher information in the sample? Recall that the score
V
{\displaystyle V}
is defined as
V
=
∂
∂
σ
2
log
[
L
(
σ
2
,
X
)
]
{\displaystyle V={\frac {\partial }{\partial \sigma ^{2}}}\log \left[L(\sigma ^{2},X)\right]}
where
L
{\displaystyle L}
is the likelihood function . Thus in this case,
log
[
L
(
σ
2
,
X
)
]
=
log
[
1
2
π
σ
2
e
−
(
X
−
μ
)
2
/
2
σ
2
]
=
−
log
(
2
π
σ
2
)
−
(
X
−
μ
)
2
2
σ
2
{\displaystyle \log \left[L(\sigma ^{2},X)\right]=\log \left[{\frac {1}{\sqrt {2\pi \sigma ^{2}}}}e^{-(X-\mu )^{2}/{2\sigma ^{2}}}\right]=-\log({\sqrt {2\pi \sigma ^{2}}})-{\frac {(X-\mu )^{2}}{2\sigma ^{2}}}}
V
=
∂
∂
σ
2
log
[
L
(
σ
2
,
X
)
]
=
∂
∂
σ
2
[
−
log
(
2
π
σ
2
)
−
(
X
−
μ
)
2
2
σ
2
]
=
−
1
2
σ
2
+
(
X
−
μ
)
2
2
(
σ
2
)
2
{\displaystyle V={\frac {\partial }{\partial \sigma ^{2}}}\log \left[L(\sigma ^{2},X)\right]={\frac {\partial }{\partial \sigma ^{2}}}\left[-\log({\sqrt {2\pi \sigma ^{2}}})-{\frac {(X-\mu )^{2}}{2\sigma ^{2}}}\right]=-{\frac {1}{2\sigma ^{2}}}+{\frac {(X-\mu )^{2}}{2(\sigma ^{2})^{2}}}}
where the second equality is from elementary calculus. Thus, the information in a single observation is just minus the expectation of the derivative of
V
{\displaystyle V}
, or
I
=
−
E
(
∂
V
∂
σ
2
)
=
−
E
(
−
(
X
−
μ
)
2
(
σ
2
)
3
+
1
2
(
σ
2
)
2
)
=
σ
2
(
σ
2
)
3
−
1
2
(
σ
2
)
2
=
1
2
(
σ
2
)
2
.
{\displaystyle I=-\operatorname {E} \left({\frac {\partial V}{\partial \sigma ^{2}}}\right)=-\operatorname {E} \left(-{\frac {(X-\mu )^{2}}{(\sigma ^{2})^{3}}}+{\frac {1}{2(\sigma ^{2})^{2}}}\right)={\frac {\sigma ^{2}}{(\sigma ^{2})^{3}}}-{\frac {1}{2(\sigma ^{2})^{2}}}={\frac {1}{2(\sigma ^{2})^{2}}}.}
Thus the information in a sample of
n
{\displaystyle n}
independent observations is just
n
{\displaystyle n}
times this, or
n
2
(
σ
2
)
2
.
{\displaystyle {\frac {n}{2(\sigma ^{2})^{2}}}.}
The Cramér–Rao bound states that
var
(
T
)
≥
1
I
.
{\displaystyle \operatorname {var} (T)\geq {\frac {1}{I}}.}
In this case, the inequality is saturated (equality is achieved), showing that the estimator is efficient .
However, we can achieve a lower mean squared error using a biased estimator. The estimator
T
=
∑
i
=
1
n
(
X
i
−
μ
)
2
n
+
2
.
{\displaystyle T={\frac {\sum _{i=1}^{n}(X_{i}-\mu )^{2}}{n+2}}.}
obviously has a smaller variance, which is in fact
var
(
T
)
=
2
n
(
σ
2
)
2
(
n
+
2
)
2
.
{\displaystyle \operatorname {var} (T)={\frac {2n(\sigma ^{2})^{2}}{(n+2)^{2}}}.}
Its bias is
(
1
−
n
n
+
2
)
σ
2
=
2
σ
2
n
+
2
{\displaystyle \left(1-{\frac {n}{n+2}}\right)\sigma ^{2}={\frac {2\sigma ^{2}}{n+2}}}
so its mean squared error is
MSE
(
T
)
=
(
2
n
(
n
+
2
)
2
+
4
(
n
+
2
)
2
)
(
σ
2
)
2
=
2
(
σ
2
)
2
n
+
2
{\displaystyle \operatorname {MSE} (T)=\left({\frac {2n}{(n+2)^{2}}}+{\frac {4}{(n+2)^{2}}}\right)(\sigma ^{2})^{2}={\frac {2(\sigma ^{2})^{2}}{n+2}}}
which is less than what unbiased estimators can achieve according to the Cramér–Rao bound.
When the mean is not known, the minimum mean squared error estimate of the variance of a sample from Gaussian distribution is achieved by dividing by
n
+
1
{\displaystyle n+1}
, rather than
n
−
1
{\displaystyle n-1}
or
n
+
2
{\displaystyle n+2}
.
References and notes [ edit ]
^ Cramér, Harald (1946). Mathematical Methods of Statistics . Princeton, NJ: Princeton Univ. Press. ISBN 0-691-08004-6 . OCLC 185436716 .
^ Rao, Calyampudi Radakrishna (1945). "Information and the accuracy attainable in the estimation of statistical parameters". Bulletin of the Calcutta Mathematical Society . 37 . Calcutta Mathematical Society : 81– 89. MR 0015748 .
^ Rao, Calyampudi Radakrishna (1994). S. Das Gupta (ed.). Selected Papers of C. R. Rao . New York: Wiley. ISBN 978-0-470-22091-7 . OCLC 174244259 .
^ Fréchet, Maurice (1943). "Sur l'extension de certaines évaluations statistiques au cas de petits échantillons". Rev. Inst. Int. Statist . 11 (3/4): 182– 205. doi :10.2307/1401114 . JSTOR 1401114 .
^ Darmois, Georges (1945). "Sur les limites de la dispersion de certaines estimations". Rev. Int. Inst. Statist . 13 (1/4): 9– 15. doi :10.2307/1400974 . JSTOR 1400974 .
^ Aitken, A. C.; Silverstone, H. (1942). "XV.—On the Estimation of Statistical Parameters" . Proceedings of the Royal Society of Edinburgh Section A: Mathematics . 61 (2): 186– 194. doi :10.1017/S008045410000618X . ISSN 2053-5902 . S2CID 124029876 .
^ Shenton, L. R. (1970). "The so-called Cramer–Rao inequality". The American Statistician . 24 (2): 36. JSTOR 2681931 .
^ Dodge, Yadolah (2003). The Oxford Dictionary of Statistical Terms . Oxford University Press. ISBN 978-0-19-920613-1 .
^ Bhattacharyya, A. (1946). "On Some Analogues of the Amount of Information and Their Use in Statistical Estimation" . Sankhyā . 8 (1): 1– 14. JSTOR 25047921 . MR 0020242 .
^ Bhattacharyya, A. (1947). "On Some Analogues of the Amount of Information and Their Use in Statistical Estimation (Contd.)" . Sankhyā . 8 (3): 201– 218. JSTOR 25047948 . MR 0023503 .
^ Bhattacharyya, A. (1948). "On Some Analogues of the Amount of Information and Their Use in Statistical Estimation (Concluded)" . Sankhyā . 8 (4): 315– 328. JSTOR 25047897 . MR 0026302 .
^ Nielsen, Frank (2013). "Cramér-Rao Lower Bound and Information Geometry". Connected at Infinity II . Texts and Readings in Mathematics. Vol. 67. Hindustan Book Agency, Gurgaon. p. 18-37. arXiv :1301.3578 . doi :10.1007/978-93-86279-56-9_2 . ISBN 978-93-80250-51-9 . S2CID 16759683 .
^ Suba Rao. "Lectures on statistical inference" (PDF) . Archived from the original (PDF) on 2020-09-26. Retrieved 2020-05-24 .
^ "Cramér Rao Lower Bound - Navipedia" . gssc.esa.int .
^ "Cramér-Rao Bound" .
^ For the Bayesian case, see eqn. (11) of Bobrovsky; Mayer-Wolf; Zakai (1987). "Some classes of global Cramer–Rao bounds" . Ann. Stat . 15 (4): 1421– 38. doi :10.1214/aos/1176350602 .
^ Polyanskiy, Yury (2017). "Lecture notes on information theory, chapter 29, ECE563 (UIUC)" (PDF) . Lecture notes on information theory . Archived (PDF) from the original on 2022-05-24. Retrieved 2022-05-24 .
^ Kay, S. M. (1993). Fundamentals of Statistical Signal Processing: Estimation Theory . Prentice Hall. p. 47. ISBN 0-13-042268-1 .
Amemiya, Takeshi (1985). Advanced Econometrics . Cambridge: Harvard University Press. pp. 14 –17. ISBN 0-674-00560-0 .
Bos, Adriaan van den (2007). Parameter Estimation for Scientists and Engineers . Hoboken: John Wiley & Sons. pp. 45– 98. ISBN 978-0-470-14781-8 .
Kay, Steven M. (1993). Fundamentals of Statistical Signal Processing, Volume I: Estimation Theory . Prentice Hall. ISBN 0-13-345711-7 . . Chapter 3.
Shao, Jun (1998). Mathematical Statistics . New York: Springer. ISBN 0-387-98674-X . . Section 3.1.3.
Posterior uncertainty, asymptotic law and Cramér-Rao bound, Structural Control and Health Monitoring 25(1851):e2113 DOI: 10.1002/stc.2113
FandPLimitTool a GUI-based software to calculate the Fisher information and Cramér-Rao lower bound with application to single-molecule microscopy.